KAIST, IISWC 최우수 논문상·연구 기록물상 동시 수상

박종세 교수팀의 2024 IEEE 국제 워크로드 특성화 심포지엄 발표 모습.
박종세 교수팀의 2024 IEEE 국제 워크로드 특성화 심포지엄 발표 모습.

한국과학기술원(KAIST·총장 이광형)은 박종세 전산학부 교수팀이 지난 9월 15~17일 캐나다 밴쿠버에서 열린 '2024 IEEE 국제 워크로드 특성화 심포지엄(IISWC 2024)'에서 최우수 논문상과 최우수 연구 기록물 상'을 동시 수상했다고 밝혔다.

연구팀은 '초거대 언어모델(LLM) 추론 서비스 제공을 위한 하드에어(HW)·소프트웨어(SW) 공동 시뮬레이션 인프라' 논문으로 두 상을 동시에 수상했다.

IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회며, 개최시마다 최우수 논문상과 최우수 연구 기록물 상을 하나씩 수여한다.

이번 수상 연구는 LLM 추론 서비스를 위한 HW·SW 통합 시뮬레이션 인프라를 최초 개발한 점, 연구 지속 발전을 위해 오픈소스로 공개한 코드의 높은 완성도와 사용자 편의성 측면에서 좋은 평가를 받았다.

이번 연구에서 연구팀은 챗GPT와 같은 LLM 추론 서비스를 실행하는 대규모 시스템을 여러 가지 HW와 SW를 추가해 시뮬레이션할 수 있는 시뮬레이션 인프라를 제안했다.

이를 통해 그래픽처리장치(GPU), 신경망처리장치(NPU)와 지능형메모리반도체(PIM)과 같은 다양한 HW뿐만 아니라 반복 수준 스케쥴링, KV 캐시 페이징과 같은 LLM 추론을 위한 SW적 요소를 모두 함께 시뮬레이션할 수 있었다.

이번 연구는 KAIST 전산학부 박종세 교수팀의 조재홍, 김민수, 최현민, 허구슬 학생들이 주도했다.

박종세 교수는 “이번 연구를 통해, LLM 클라우드 상에서 다양한 인공지능(AI) 반도체와 시스템 SW 성능을 종합적으로 평가해 볼 수 있는 오픈소스 도구를 공개할 수 있게 돼 기쁘고, 앞으로도 생성형 AI를 위한 클라우드 시스템 연구를 지속해 나갈 것”이라고 소감을 전했다.

이번 연구 결과는, 챗GPT와 같이 LLM을 활용하는 단순한 챗봇 AI를 넘어, 생성형 AI로 대표되는 미래 AI 산업에서 이종 AI 반도체 기반 클라우드 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다.

한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업, 및 하이퍼엑셀의 지원을 받아 수행됐다.

김영준 기자 kyj85@etnews.com